
HANDICRAFT

A digital art developing program created using Python.

TABLE OF
CONTENTS

• How to use Handicraft – pg. 2 - 7

• Installation Instructions – pg. 2

• Tools – pg. 3 and 4

• The File Tab – pg. 4 and 5

• Other Tabs – pg. 6

• Shortcuts – pg. 6

• The Overlapping Concept – pg. 7

• Software Versions – pg. 7

• How Handicraft Works – pg. 8 - 16

• Modules – pg. 8

• The Mouse – pg. 9 - 11

• New Or Clear – pg. 12

• Setting a Tool Type – pg. 13

• Saving a File – pg. 13

• Opening a File – pg. 14

• Taking a Screenshot – pg. 14 and 15

• Problem-Solving – pg. 16

• The Code – pg. 17 - 25

resources can be found on the back of the binder

1

2

HOW TO USE

HANDICRAFT

Installation instructions:

Handicraft is a versatile tool designed for digital art development and
creative exploration. It offers a unique design process and user
experience that encourages creativity. Although it may not be as
extensive as other digital art creator software, it still serves its
purpose effectively.

I had a blast experimenting with Handicraft after creating it, and it
brought me so much joy that I felt compelled to share it with the
world. I uploaded the software for the art development application on
GitHub, and you can easily install and enjoy it by following the
instructions below:

1. To begin, open your web browser and input the given link:

https://github.com/pi-this/Handicraft

2. Afterwards, proceed to click on

the green button labeled 'code’

and select 'download ZIP’.

3. After successfully installing the

file, locate and click on the 'main.py’

file to launch The Handicraft software.

If It Doesn’t Work…
If you are experiencing issues with running the code, it's possible

that not all necessary components have been installed. Please ensure
that Python is properly installed on your device and also check if the
following Python modules have been installed: web browser, tkinter,

time, random, and PIL.

https://github.com/pi-this/Handicraft

Tools:

3

Let's talk about the third tool in our toolbox - the pixel
tool. With this tool, you can create squares exactly where
you click your mouse. Its strength is in producing bold,
prominent lines. Each tool we've discussed so far has been
designed for a specific purpose - the paintbrush for fluffy
clouds and circular foliage, the pencil tool for spiky
objects like grass and hair, and the pixel tool for creating
thick, unbroken lines for words and other objects. But
what if I want to fill the entire background with a specific
color, like blue for the sky? No problem. The fill-all tool
can fill the background with any color you select.

To find the tools, simply look at the bottom toolbar on
your screen or the top navigation menu under ‘tools.’
Now, let's get into the details of each tool. First up, the
paintbrush. Keep in mind that each drawing tool has a
unique shape, so each click will produce a different
result. In the case of the paintbrush, it creates a circular
shape.

Play Around!
Explore and experiment
with each tool to gain
knowledge through
hands-on experience.

Let's talk about
the pencil. Just
like any other
tool, it has a
specific shape -
a line. This
shape comes in
handy when
drawing things
such as grass,
hair, or other
spiked objects. Can you identify the

tool used to create the
grass in the photo
above? The grass
serves as a perfect
illustration of the
pencil tool.

4

Creating computer art using only
black and white with Handicraft can
be uninteresting and lackluster. That's
why having the ability to select your
own colors can enhance the
experience. If you're particular about the color of your artwork, simply

adjust the triangles to set the red, green, and blue values or input your

desired color in the selection box above the color display. Adding color

to your art breathes life into it. However, it would be limited if only one

size option for drawing existed. Fortunately, Handicraft gives you the

freedom to choose from sizes ranging from 1-300px. Check out the

image below to see the sizes of 1, 5, 10, 45, 80, 120, and 300px.

Out of all the tools

mentioned, the touch tool

may not be the most

essential in this software,

but it still serves a purpose.

If you simply want to

showcase your artwork to

friends without having to

draw anything, the touch

tool is the one to use. It

allows you to easily click

on the canvas and display

your work.

The File Tab:

In order to avoid losing your hard work, it's

important to know how to save and open

files. The next topic we'll cover is the File

tab, which includes these features.

5

To access the options under the "File" category,
simply look towards the right side of your screen
where a photo is displayed. You'll find a variety of
choices such as taking screenshots, creating new files,
clearing artwork, opening files, renaming files, saving
files, saving files under a new name, and exiting the
program. Click on the corresponding button or use
the keyboard shortcut to select the option of your
choice.
Let's start by discussing Handicraft's screenshot feature located on the top
button of the "File" drop-down menu. This option allows you to capture a
screenshot of your entire computer screen, which can be useful in case any
errors occur while saving your artwork. However, this issue will be resolved
in future versions of Handicraft. Additionally, the "placeimage" option
shown in the image can be accessed by using the shortcut 'S.' This feature
allows you to place an image on your canvas, just like adding a sticker.
However, it needs improvement since it only places the image in the center
of the canvas and cannot be moved. Nonetheless, this is something that can
be addressed in future versions. The other options in the drop-down menu
are probably familiar to you, as they are self-explanatory. The "new" option
will open a new file and clear all data. The "clear" option only clears all
canvas data, while the "open" option allows you to open an image file of
any kind. If the same image is opened again, it will erase your art data and
open the same image. To open an entirely different image, use the "open as"
option. "Save" and "save as" give you the same options, allowing you to
save the file with a different name and in a different place. Lastly, at the
bottom of the drop-down menu is the exit button. This button closes the art
program and Python as well, stopping the entire software and not saving any
of your work unless saved beforehand.

Warning!
Remember to save your
work as Handicraft does

not have an automatic save
feature.

6

Other Tabs:
We discussed the "File" and "Tools" tabs, but there
are three other tabs that are not as busy yet still offer
useful features. The "Edit" tab has an undo feature,
which can also be accessed using the CTRL+Z
shortcut. Unfortunately, there is no redo option in this
version, but it will be included in a future release. The
View tab is located to the right of the Edit tab and
contains all the options that let you modify how the
software appears. Currently, there is only one option
in this version - the full-screen option. This option
provides more room to create bigger and better
projects. Handicraft has several useful features to
explore, with many more on the way. However, if you
are ever unsure about a button, shortcut, or error, this
art editor software has a dedicated website on
GitHub, called pi-this. Click the "Handicraft Home
Page" button under the Help tab to access information
about Handicraft.

The option to undo is
shown in the picture
above.

The picture above
shows the View tab's
full-screen button.

Shortcuts:
I briefly discussed the availability of shortcuts, which are visible in
the images. But what advantages do shortcuts offer? They provide
users with more flexibility in utilizing the software, and they make it
more efficient to create and discover. Every new option added comes
with a corresponding shortcut, so it's recommended to commit the
shortcuts to memory for easy access and use.

The Overlapping Concept:

7

Software Versions:

While this software provides many features,

there are some options that would be useful

but are currently unavailable. Due to the

absence of certain tools, Handicraft users

must find ways to work around these

challenges.

One challenge that users of this software may encounter is the inability of the fill

tool to fill specific parts of the screen. Although it can fill the entire screen in this

version, it cannot fill specific objects. However, there is a workaround for this issue.

Users of the art software can employ a technique called the overlapping concept,

which is also used in traditional painting and is not too difficult to learn. In the

image shown above, I utilized the overlapping concept by first filling the sky,

followed by the clouds, sand, tree, grass, and finally, the word Handicraft. When

applying this technique, it is recommended to begin with the bottom layers and

work your way up to the top layers.

Greetings! Earlier, I discussed how different versions of

Handicraft may vary in features. However, I have yet to

provide information on the past and present versions of

this software. Currently, Handicraft is running on version

1.3, while the previous version was 1.0. To compare the

two versions, images can be found on the right corners for

your convenience. The latest update of this digital art

software offers numerous enhancements, such as

expanded color options, customizable size, perspective

tools, and various options under the 'File' tab.

The version above is 1.3

while the one below is 1.0.

Did You Know?
To download Handicraft 1.0, simply visit
the same location where version 1.3 was

installed - on GitHub.

HOW HANDICRAFT

WORKS

8

Let's take a look at some key sections of the code and their descriptions. It's

important to note that we won't be covering the entire software's code, but

rather focusing on Handicraft's inner workings. The commented code can be

found in the last section of the binder. Our focus will be on understanding

the crucial aspects of how the code was created.

The digital art development software was crafted using Python 3. Although,

if a user intends to develop a more intricate Python program beyond a basic

greeting modules must be integrated into their code. So, what exactly is a

module? Python modules are simply files that contain commands used

within the software. They are an effective way of simplifying code and

making it more understandable and user-friendly.

Modules:

In the picture displayed above, you can see the various Python modules

utilized in Handicraft. The webbrowser module enables the opening of web

links. The time module facilitates a waiting period for a designated number

of seconds. The tkinter assists in managing the software window. PIL

(Python Imaging Library) is responsible for opening and closing images.

Lastly, the random module plays a significant role in randomly selecting

any list of data. Every module has a crucial role to play in the code's

functioning. Without these modules, the code would not work correctly.

9

The Mouse:
One crucial component of the software's code is the section that interprets

mouse movements. The mouse serves as the primary tool for performing

various tasks such as drawing, selecting, and closing windows.
def motion(self,event): # // function for mouse motion

self.line_width = self.choose_size_button.get()
if self.b1 == "down":

if self.tool_option == 'paintbrush':

if self.xold is not None and self.yold is not None:

self.x =
event.widget.create_oval(self.xold,self.yold,event.x,event.y,width=self.line_width,outline=self.col
or,fill=self.color)

self.draw.ellipse((self.xold,self.yold,event.x+self.line_width,event.y+self.line_width),
fill=self.color, outline=self.color)

self.stack.append(self.x)
elif self.tool_option == 'pencil':

if self.xold is not None and self.yold is not None:

self.x =
event.widget.create_line(self.xold,self.yold,event.x,event.y,width=self.line_width,fill=self.color)

self.draw.line(((self.xold,self.yold),(event.x,event.y)),(self.color),width=self.line_width)
self.stack.append(self.x)

elif self.tool_option == 'pixel':

if self.xold is not None and self.yold is not None:

self.x =
event.widget.create_rectangle(self.xold,self.yold,event.x,event.y,outline=self.color,fill=self.colo
r,width=self.line_width)

self.draw.rectangle((self.xold,self.yold,event.x+self.line_width,event.y+self.line_width),
fill=self.color, outline=self.color)

self.stack.append(self.x)
self.xold = event.x
self.yold = event.y

The code above is included in a class called "GameClass" and is contained

within a function named "motion." The "motion" function is responsible for

detecting mouse movements and clicks. If a click is detected, the code

checks which tool option is selected. The shape that is drawn will vary

depending on the tool option chosen.

10

self.line_width = self.choose_size_button.get()

The code displayed above sets the size of the art in
the software. The size is determined by the toolbar at
the bottom of the canvas and will be drawn
accordingly.

Let's break down the "motion" function by examining
each section step by step. We'll begin with
"self.line_width = self.choose_size_button.get()" to
gain a better understanding.

if self.b1 == "down":
if self.tool_option == 'paintbrush':

if self.xold is not None and self.yold is not None:

self.x =
event.widget.create_oval(self.xold,self.yold,event.x,event.y,width=self.line_width,outlin
e=self.color,fill=self.color)

self.draw.ellipse((self.xold,self.yold,event.x+self.line_width,event.y+self.line_width),
fill=self.color, outline=self.color)

self.stack.append(self.x)

Within the motion function, the code above follows the previous lines of
code. Initially, the code checks if the left button on the mouse is pressed
down and if so, it executes the code that follows. This code specifically
checks if the paintbrush is selected. If it is, a circle is drawn at the exact
position of the mouse cursor. Moreover, if the left mouse button is held
down while moving the mouse, a series of circles are created, forming a
line. Lastly, the line of code "self.stack.append(self.x)" adds each circle
drawn to a list, which can be gradually removed when undoing a portion of
the artwork.
self.w.bind("<Motion>", self.motion) # // defines what motion is with the mouse

The creation of circles, squares, and lines through the "motion" function is
not a standalone process. Several lines of code are required to execute this
function. For instance, the utilization of a window for a canvas is only
possible with the incorporation of modules like Tkinter. Additionally, the
code line, "self.w.bind("<Motion>", self.motion)", is responsible for
detecting motion from the computer mouse and storing the data in the
variable, "self.motion." These examples emphasize the importance of code
working together to achieve desired outcomes.

In case You Were
Wondering…

We won't be discussing the
pixel or pencil drawing section
in the "motion" function since

there isn't a significant
difference between that and the

code displayed below.

11

In the previous two pages, we discussed the significance of mouse motion in
this software. However, it is crucial to note that none of it would be possible
without the user clicking the left mouse button. At the beginning of the
page, the code presented is designed to detect whether the left button on the
mouse is up or down. In case the left button is pushed down, the value of
self.b1down changes to "True." Conversely, if the button is released, the
value of self.b1up becomes "True." Utilizing variables is highly effective
and efficient in programming, and I utilized these two variables to convey
information to the "motion" function regarding the status of the mouse
button.

// The code below outlines the action to be taken
when the left mouse button is clicked

self.w.bind("<ButtonPress-1>", self.b1down)
self.w.bind("<ButtonRelease-1>", self.b1up)

def b1down(self,event): # // what happens when the mouse is clicked

self.line_width = self.choose_size_button.get()
self.b1 = "down"
if self.tool_option == "paintbrush": # // if the tool option is set to paintbrush, use the

paintbrush
self.x =

event.widget.create_oval(self.xold,self.yold,event.x,event.y,width=self.line_width,outline=self.color,fi
ll=self.color)

self.draw.ellipse((self.xold,self.yold,event.x+self.line_width,event.y+self.line_width),
fill=self.color, outline=self.color)

self.stack.append(self.x)
elif self.tool_option == "pencil": # // if the tool option is set to pencil, use the pencil

self.x =
event.widget.create_line(self.xold,self.yold,event.x,event.y,width=self.line_width,fill=self.color)

self.draw.line(((self.xold,self.yold),(event.x,event.y)),(self.color),width=self.line_width)
self.stack.append(self.x)

elif self.tool_option == "pixel": # // if the tool option is set to pixel, use the pixel
self.x =

event.widget.create_rectangle(self.xold,self.yold,event.x,event.y,outline=self.color,fill=self.color,wid
th=self.line_width)

self.draw.rectangle(((self.xold,self.yold),(event.x+self.line_width,event.y+self.line_width)),(self.colo
r))

self.stack.append(self.x)

During the initial development of Handicraft version 1.0, I encountered a
problem with the "motion" feature. While it allowed for drawing when the
mouse was dragged and clicked, it failed to produce a dot on the canvas if
the mouse was clicked but not dragged. Although several solutions were
available, I chose to create a new function that replicated the capabilities of
the "motion" feature except it activates when the left mouse button is
clicked, rather than detecting motion. I have also developed a function
named "b1up." This function informs additional variables that the mouse
button is no longer clicked, providing extra benefits. The code for this
function is shown at the def b1up(self,event): # // when the mouse is released

self.b1 = "up"
self.xold = None
self.yold = None

bottom right of the
page.

New Or Clear:
It can be difficult to distinguish between the "new" and "clear" commands,

as they may seem alike at first glance. Nonetheless, there are distinct

differences between them. I will provide an explanation of the distinctions

between the "new" and "clear" commands and suggest the appropriate usage

for each one.
If I needed to clarify the distinction to someone

without displaying the code, I would describe how the

"new" command restarts the canvas, whereas the

"clear" command simply removes the content on it.

In the code below, you can see the "new" function on the left and the "clear"

function on the right. You may notice that the "new" function shares many

lines of code with the "clear" function. This is because the "new" function

essentially starts from scratch, erasing your history, current color, tool

selection, tool size, and all other variables. The "new" command resets all

data variables to their original values. On the other hand, the "clear"

command simply clears the canvas and resets the necessary variables in

order to do so.

def new(self): # // I need to use this
function to create a fresh canvas for a
brand-new project. self.fullcolor =
'white'

self.image=Image.new("RGB",(self.sizex,self.
sizey),(self.fullcolor))

self.draw=ImageDraw.Draw(self.image)
self.w.delete("all")
root.config(cursor="left_ptr")
self.w.configure(bg='white')
self.color = 'black'
self.filepathopen = False
self.tool_option = 'toutch'
self.choose_size_button =

Scale(self.fr_buttons, from_=1, to=300,
orient=HORIZONTAL)

self.choose_size_button.grid(row=0,
column=6, sticky="ew", padx=5, pady=5)

def clear(self): # // To start a
new one, this function clears
the entire canvas.
self.w.delete("all")

self.w.configure(bg='white')
self.fullcolor = 'white'

self.image=Image.new("RGB",(self
.sizex,self.sizey),(self.fullcol
or))

self.draw=ImageDraw.Draw(self.im
age)

12

13

Setting a Tool Type:

def pixel(self): # // The tool type will be changed to "pixel".
self.tool_option = 'pixel'
root.config(cursor="dot")

After selecting your preferred user tool type by clicking on a button, you

may wonder how the code switches it to the chosen one. The solution can be

found in the straightforward code snippet provided below.

In the code above, a function adapts its name according to the tool being

used. Since the tool in use is called "pixel," the function is named the same.

Only this function is displayed because the others are identical except for

using different names and cursors. Despite its size, this function is essential.

The first line sets the tool option to "pixel," allowing it to be stored in a

variable. All values in the code must be stored in a variable so that they can

communicate with the rest of the program. The second line of code changes

the cursor to an image that looks like a dot, accomplished through the

Tkinter module.

Saving a File:
def save(self): # // function for saving an image

try:
self.image.save(self.filename)
Rnumber = From(1000,5000)
root.config(cursor="watch")
self.tool_option = 'toutch'
root.after(Rnumber,self.change)

except:
self.saveAs_file()

Handicraft is no fun if you

can’t save your creations,

but how does saving

work? After clicking save,

the “save” function plays

its part.

It appears that the code is attempting to run, but it appears to not be

functioning properly, which could indicate that a file has not been selected.

In order to proceed, the "saveAs_file" function must be executed to select a

file. Assuming a file has been selected, the code will then proceed to save

the file name, display a loading cursor for a random period, and then switch

to a touch cursor. This brief pause is intended to give Handicraft a more

polished and professional appearance. It's worth noting that the saving

process is kept short and simple due to the use of a popular image

software known as PIL.

Opening a File:
def open_file(self): # // Function to Open a File

try:

self.IMAGEopen=tk.PhotoImage(file=self.filepathopen)
self.MYimage = self.w.create_image(0, 0,

anchor=tk.NW, image=self.IMAGEopen)
except:

self.openAs_file()

14

Similar to the save

function, the

open_file function

checks if a file has

been selected by

attempting the

code.
In case of a code error, the "openAs_file" function is

executed for file selection. If there are no errors, the

code assumes that a file has already been chosen and

proceeds accordingly. The code segment above

employs the Tkinter and PIL modules to open the

image file and set it on the Tkinter canvas.

Taking a Screenshot:
If you encounter errors while trying to save an image, there is a

temporary solution that may help. Take a screenshot of your computer

screen if you experience unexpected issues while saving your artwork.

Although you may need additional software to crop it later, this method

is likely to provide you with the desired outcome. In a previous section, I

covered how to take a screenshot. Now, let's examine how the code

works. Below is the code that I will go through step by step.

def capture(self): # // captures a screen shot of the entire window
x0 = self.w.winfo_rootx()
y0 = self.w.winfo_rooty()
x1 = x0 + self.w.winfo_width()
y1 = y0 + self.w.winfo_height()

saveCapture = asksaveasfilename(title="Save File", filetypes=[("png
files", "*.png")]

)
if not saveCapture:

return

wait(1)
im = ImageGrab.grab((0, 0, 1915, 1000))
im.save(saveCapture)

15

I have provided you with the necessary code to switch to full-screen mode,
which can prove to be quite advantageous in case you wish to avoid any
future cropping of the image. Now let's go through the capture function step
by step, starting with the first lines within the function.

def toggleFullScreen(self): # toggles to full screen
self.fullScreenState = not

self.fullScreenState
root.attributes("-fullscreen",

self.fullScreenState)

x0 = self.w.winfo_rootx()
y0 = self.w.winfo_rooty()
x1 = x0 + self.w.winfo_width()
y1 = y0 + self.w.winfo_height()

The code above is setting the height and width of the user's
computer screen, into variables that can later be used.
saveCapture = asksaveasfilename(title="Save File",
filetypes=[("png files", "*.png")]

)
if not saveCapture:

return

The code shown above opens a dialog box and lets the user
choose where he or she wishes the save the captured screenshot
and what it shall be named.

wait(1)
im = ImageGrab.grab((0, 0, 1915, 1000))
im.save(saveCapture)

The last three lines in the function are above. These lines make
Handicraft wait for one second, then grab the entire computer
screen and save the captured image using the PIL module.

Guess What!
Since taking a screenshot in

Handicraft doesn’t only take a shot
of the software’s screen but the

entire computer screen, then you
can take a screenshot of anything as

long as the handicraft window is
open.

16

Problem Solving:
Errors are things that come up in big programs a lot, which is why problem-

solving is so valuable in programming.

try:
this

except:
print("now try this")

Python has a type of command

that’s just for error handling,

shown to the left is one

example of this command.

I've faced problems throughout both versions of Handicraft, but I've been

able to overcome them. This software version currently has several errors,

but that means I'll be able to learn more, create more, and solve more

problems in future versions. Working through problems is how Handicraft

works behind the scenes, It’s one of the reasons that I enjoy programming. I

enjoy it because I can fit the puzzle pieces together and make something

new and enjoyable while solving problems I might face. In closing,

Handicraft is a software that’s made for creators to explore art either by

using the software or by learning about the code that makes the software

and getting inspired to look towards the future of crafting their own project.

The Python Developers 2021 survey by JetBrains

found that 84 % of developers use Python as their

primary language. For the past four years, this

proportion has been constant.

16%

84%

How Many Developers Use Python?

No Python

Python

See the pie chart on the left,

lots of developers use

Python as their primary

language, and Handicraft is

a great way for new

developers to learn about

the language and how to

interact with programming

in general.

THE CODE

from webbrowser import open as link # // used to open a web link
from time import sleep as wait # // used to wait for a number of seconds
from tkinter import * # // Tkinter is used to open the game window
from PIL import Image,ImageDraw,ImageDraw2,ImageGrab # // this module is used to open
images
import tkinter as tk # // importing the tkinter module under another name
from tkinter.filedialog import askopenfilename, asksaveasfilename # // This module allows
the user to open and save image files to and from their computer
from tkinter.colorchooser import askcolor as ASK # // This module allows the user to
select any preferred color from a single window
from random import randrange as From # // used to randomize information

class GameClass:

def __init__(self,parent,posx,posy,*kwargs): # // in python __init__ functions run
when the class is ran

root.attributes('-fullscreen', False)
self.fullScreenState = False

root.bind("<F1>", lambda x: self.toggleFullScreen()) # // if key 'F1' is pressed,
then toggle full screen

root.bind("<F2>", lambda x: self.capture()) # // if key 'F2' is pressed, then
capture a screen shot

self.parent = parent

"""
Global variables are being set
both above and below, and then
stored in a variable that can be
shared within a single class.
"""
self.posx = posx
self.posy = posy

// bellow the size of the canvas is set
self.sizex = 2000
self.sizey = 1000

self.b1 = "up"

self.w = Canvas(self.parent,width=self.sizex,height=self.sizey) # // sets canvases
size

self.w.pack(expand = True, fill = BOTH) # // allows the canvas to be exspanded

"""
inside the program there are is a window layer called root
and a canvas layer called w
""“

The Handicraft commented code is fully provided on the following pages.

17

self.w.place(x=self.posx,y=self.posy) # // an introduction image is placed at the
start-up of the program

root.rowconfigure(0, minsize=80, weight=1)
root.columnconfigure(0, minsize=80, weight=1)
// above, rows and columns are being configured for buttons to lay onto

self.openButtonImages()
self.fr_buttons = tk.Frame(root, relief=tk.RAISED, bd=2)
fillall_button = tk.Button(self.fr_buttons, image=self.Y, command=self.fill_all)
fillall_button.grid(row=0, column=1, sticky="ew", padx=5, pady=5)
btn_pixel = tk.Button(self.fr_buttons, image=self.W, command=self.pixel)
btn_pencil = tk.Button(self.fr_buttons, image=self.I, command=self.pencil)
btn_toutch = tk.Button(self.fr_buttons, image=self.Mouse, command=self.toutch)
btn_toutch.grid(row=0, column=0, sticky="ew", padx=5)
btn_paintbrush = tk.Button(self.fr_buttons, image=self.T, command=self.paintbrush)
btn_pixel.grid(row=0, column=2, sticky="ew", padx=5, pady=5)
btn_pencil.grid(row=0, column=3, sticky="ew", padx=5, pady=5)
btn_paintbrush.grid(row=0, column=4, sticky="ew", padx=5)

// above, the buttons on the bottom row are being configured and aligned

self.choose_size_button = Scale(self.fr_buttons, from_=1, to=300,
orient=HORIZONTAL)

self.choose_size_button.grid(row=0, column=6, sticky="ew", padx=5, pady=5)

// sets the button size above

self.color_button = Button(self.fr_buttons, image=self.C,
command=self.choose_color)

self.color_button.grid(row=0, column=5)
self.color = 'black'

self.fr_buttons.grid(row=1, column=0, sticky="ns")
self.w.bind("<Motion>", self.motion) # // defines what motion is with the mouse

// The code below outlines the action to be taken when the left mouse button is
clicked

self.w.bind("<ButtonPress-1>", self.b1down)
self.w.bind("<ButtonRelease-1>", self.b1up)

self.w.bind("<Enter>", lambda x: self.introExit()) # // Once the canvas is click
with the mouse then the introdunction image disapears compleatly

root.bind("<Control-Shift-S>", lambda x: self.saveAs_file()) # // click control
and shift, and 'S' to save the file as a specific name

root.bind("<Control-c>", lambda x: self.clear()) # // clear all work by clicking
control c

root.bind("<Control-s>", lambda x: self.save()) # // if button control and s is
clicked, then save

root.bind("<Control-n>", lambda x: self.new()) # // if clicked control and n is
clcked, then open a new canvas

root.bind("<Escape>", lambda x: self.Quit()) # // if the Escape button on the
keyboard is clicked, then close the program

root.bind("<Control-o>", lambda x: self.open_file()) # // When the user clicks on
the button labeled "control + o," the computer files will open, giving the user a
selection to choose from.

root.bind("<Control-Shift-O>", lambda x: self.openAs_file()) # //I have created a
unique invention called "Open as File" which is not currently offered by any art editor.
This command functions similarly to the "Save As" command

18

root.bind("<Control-z>", lambda x: self.undo()) # // after control and z are clicked,
then undo

root.bind("<s>", lambda x: self.opensticker()) # // To add an image to the canvas,
simply press the 'S' key on your keyboard and the computer photos will open up.

self.menubar = Menu(root)
self.filemenu = Menu(self.menubar, tearoff=0)
self.filemenu.add_command(label="screenshot F2", command=self.capture)
self.filemenu.add_command(label="placeimage S", command=self.opensticker)
self.filemenu.add_separator()
self.filemenu.add_command(label="New CTRL+N", command=self.new)
self.filemenu.add_command(label="clear CTRL+C", command=self.new)
self.filemenu.add_command(label="Open CTRL+O", command=self.open_file)
self.filemenu.add_command(label="Open as... CTRL+SHIFT+O",

command=self.openAs_file)
self.filemenu.add_command(label="Save CTRL+S", command=self.save)
self.filemenu.add_command(label="Save as... CTRL+SHIFT+S",

command=self.saveAs_file)
self.destroy = False
self.filemenu.add_separator()

self.filemenu.add_command(label="Exit ESC", command=self.Quit)
self.menubar.add_cascade(label="File", menu=self.filemenu)

self.editmenu = Menu(self.menubar, tearoff=0)
self.editmenu.add_command(label="undo CTRL+Z", command=self.undo)
self.menubar.add_cascade(label="Edit", menu=self.editmenu)
root.config(menu=self.menubar)

self.fullcolor = 'white'
self.helpmenu = Menu(self.menubar, tearoff=0)
self.helpmenu.add_command(label="Handicraft Home Page", command=self.homepage)
root.config(menu=self.menubar)

self.viewmenu = Menu(self.menubar, tearoff=0)
self.viewmenu.add_command(label="Full screen F1",

command=self.toggleFullScreen)
self.menubar.add_cascade(label="View", menu=self.viewmenu)
root.config(menu=self.menubar)

self.toolsmenu = Menu(self.menubar, tearoff=0)
self.toolsmenu.add_command(label="paint brush", command=self.paintbrush)
self.toolsmenu.add_command(label="pencil", command=self.pencil)
self.toolsmenu.add_command(label="pixel", command=self.pixel)

self.toolsmenu.add_command(label="fill all", command=self.fill_all)
self.toolsmenu.add_command(label="choose color", command=self.choose_color)
self.toolsmenu.add_command(label="toutch", command=self.toutch)

self.menubar.add_cascade(label="Tools", menu=self.toolsmenu)
root.config(menu=self.menubar)

self.menubar.add_cascade(label="Help", menu=self.helpmenu)
root.config(menu=self.menubar)

19

"""
The top navigation menu now features labels and buttons that allow users to easily

access digital art tools. These tools can be accessed from both the top and bottom
toolbars, with images positioned at the bottom and words at the top. For quicker
navigation, shortcuts are also available.

"""

self.line_width = self.choose_size_button.get()
self.toolsmenu.bind("<Enter>", self.arrow)

self.image=Image.new("RGB",(self.sizex,self.sizey),(self.fullcolor))
self.draw=ImageDraw.Draw(self.image)

self.openINTROimage() # // opens the intro image
self.stack = []
self.tool_option = 'toutch'

"""
When working on handicraft projects, there are numerous tools to choose from such

as brushes, paints, fill, and many others. The "variable" mentioned here signifies that
the currently selected tool is "touch."

"""

def openImagesticker(self): # // function for opening a sticker image
root.bind("<Button-1>", self.get_mouseposition)
root.config(cursor="crosshair")

def pencil(self): # // function for setting cursor looks to the pencil image
root.config(cursor="pencil")

def arrow(self): # // This function sets the cursor to appear as an arrow image.
root.config(cursor="left_ptr")

def get_mouseposition(self,event): # // This feature detects the location of the
cursor.

self.cy = event.y
self.cx = event.x
root.unbind("<Button-1>")
root.config(cursor="arrow")
self.stickerOpenC()

def undo(self): # // This function reverses any changes made to your artwork,
effectively undoing your previous actions.

try:

self.x = self.stack.pop()
self.w.delete(self.x)

except:
pass

20

def capture(self): # // captures a screenshot of the entire computer screen
x0 = self.w.winfo_rootx()
y0 = self.w.winfo_rooty()
x1 = x0 + self.w.winfo_width()
y1 = y0 + self.w.winfo_height()

saveCapture = asksaveasfilename(title="Save File", filetypes=[("png files",
"*.png")]

)
if not saveCapture:

return

wait(1)
im = ImageGrab.grab((0, 0, 1915, 1000))
im.save(saveCapture)

def toggleFullScreen(self): # toggles to full screen
self.fullScreenState = not self.fullScreenState
root.attributes("-fullscreen", self.fullScreenState)

def fill_all(self): # function for using the fill tool and filling the entire canvas
to one single color

self.w.configure(bg=self.color)
self.fullcolor = self.color
self.image=Image.new("RGB",(self.sizex,self.sizey),(self.fullcolor))
self.draw=ImageDraw.Draw(self.image)

def toutch(self): # // setting tool type to toutch
self.tool_option = 'toutch'
root.config(cursor="left_ptr")

def choose_color(self): # // function for choosing a color
self.color = ASK(color=self.color)[1]

def paintbrush(self): # // setting tool type to paint brush
self.tool_option = 'paintbrush'
root.config(cursor="spraycan")

def pencil(self): # // setting tool type to pencil
self.tool_option = 'pencil'
root.config(cursor="pencil")

def pixel(self): # // setting tool type to pixel
self.tool_option = 'pixel'
root.config(cursor="dot")

def new(self): # // This function creates a new canvas with a new project
self.fullcolor = 'white'
self.image=Image.new("RGB",(self.sizex,self.sizey),(self.fullcolor))
self.draw=ImageDraw.Draw(self.image)
self.w.delete("all")
root.config(cursor="left_ptr")
self.w.configure(bg='white')
self.color = 'black'
self.filepathopen = False
self.tool_option = 'toutch'
self.choose_size_button = Scale(self.fr_buttons, from_=1, to=300,

orient=HORIZONTAL)
self.choose_size_button.grid(row=0, column=6, sticky="ew", padx=5, pady=5)

21

def clear(self): # // this function clears the entire canvas to start all over
self.w.delete("all")
self.w.configure(bg='white')
self.fullcolor = 'white'
self.image=Image.new("RGB",(self.sizex,self.sizey),(self.fullcolor))
self.draw=ImageDraw.Draw(self.image)

def b1down(self,event): # // what happens when the mouse is clicked

self.line_width = self.choose_size_button.get()
self.b1 = "down"
if self.tool_option == "paintbrush": # // If the tool option is set to a

paintbrush, use the paintbrush
self.x =

event.widget.create_oval(self.xold,self.yold,event.x,event.y,width=self.line_width,outline
=self.color,fill=self.color)

self.draw.ellipse((self.xold,self.yold,event.x+self.line_width,event.y+self.line_width),
fill=self.color, outline=self.color)

self.stack.append(self.x)
elif self.tool_option == "pencil": # //If the tool option is set to pencil, use

the pencil
self.x =

event.widget.create_line(self.xold,self.yold,event.x,event.y,width=self.line_width,fill=se
lf.color)

self.draw.line(((self.xold,self.yold),(event.x,event.y)),(self.color),width=self.line_widt
h)

self.stack.append(self.x)
elif self.tool_option == "pixel": # // if the tool option is set to pixel, use the

pixel
self.x =

event.widget.create_rectangle(self.xold,self.yold,event.x,event.y,outline=self.color,fill=
self.color,width=self.line_width)

self.draw.rectangle(((self.xold,self.yold),(event.x+self.line_width,event.y+self.line_widt
h)),(self.color))

self.stack.append(self.x)

def introExit(self): # // function for exiting the introduction
if self.destroy == False:

self.clear()
self.destroy = True

def b1up(self,event): # // when the mouse is released
self.b1 = "up"
self.xold = None
self.yold = None

22

def motion(self,event): # // function for mouse motion
self.line_width = self.choose_size_button.get()
if self.b1 == "down":

if self.tool_option == 'paintbrush':

if self.xold is not None and self.yold is not None:

self.x =
event.widget.create_oval(self.xold,self.yold,event.x,event.y,width=self.line_width,outline
=self.color,fill=self.color)

self.draw.ellipse((self.xold,self.yold,event.x+self.line_width,event.y+self.line_width),
fill=self.color, outline=self.color)

self.stack.append(self.x)
elif self.tool_option == 'pencil':

if self.xold is not None and self.yold is not None:

self.x =
event.widget.create_line(self.xold,self.yold,event.x,event.y,width=self.line_width,fill=se
lf.color)

self.draw.line(((self.xold,self.yold),(event.x,event.y)),(self.color),width=self.line_widt
h)

self.stack.append(self.x)
elif self.tool_option == 'pixel':

if self.xold is not None and self.yold is not None:

self.x =
event.widget.create_rectangle(self.xold,self.yold,event.x,event.y,outline=self.color,fill=
self.color,width=self.line_width)

self.draw.rectangle((self.xold,self.yold,event.x+self.line_width,event.y+self.line_width),
fill=self.color, outline=self.color)

self.stack.append(self.x)
self.xold = event.x
self.yold = event.y

def homepage(self):
link("https://pi-this.github.io/handicraft.html") # // sends the user to a website

for more information on how to use Handicraft

def Quit(self):
root.destroy() # // quits Handicraft

def opensticker(self): # // function for choosing what sticker to open

self.filepathopensticker = askopenfilename(title="Open File", filetypes=[("png
files", "*.png")]

)
if not self.filepathopensticker:

return

self.openImagesticker()

23

def stickerOpenC(self): # // function for opening the chosen sticker
self.IMAGEopen=tk.PhotoImage(file=self.filepathopensticker)
self.Sticker = self.w.create_image(self.cx, self.cy, anchor=tk.NW,

image=self.IMAGEopen)

def openAs_file(self): # open as funtion

filepathopen = askopenfilename(title="Open File", filetypes=[("png files",
"*.png")]

)
if not filepathopen:

return
self.IMAGEopen=tk.PhotoImage(file=filepathopen)
self.MYimage = self.w.create_image(0, 0, anchor=tk.NW, image=self.IMAGEopen)
self.filepathopen = filepathopen

def open_file(self): # // open file function
try:

self.IMAGEopen=tk.PhotoImage(file=self.filepathopen)
self.MYimage = self.w.create_image(0, 0, anchor=tk.NW, image=self.IMAGEopen)

except:
self.openAs_file()

def saveAs_file(self): # // save as function
filepathsave = asksaveasfilename(title="Save File", filetypes=[("png files",

"*.png")]
)
if not filepathsave:

return
self.image.save(filepathsave)
self.filename = filepathsave
Rnumber = From(1000,5000)
root.config(cursor="watch")
self.tool_option = 'toutch'
root.after(Rnumber,self.change)

def change(self): # // changing the tool option
if self.tool_option == 'pixel':

self.pixel()
if self.tool_option == 'paintbrush':

self.paintbrush()
if self.tool_option == 'pencil':

self.pencil()
if self.tool_option == 'toutch':

self.toutch()

24

def save(self): # // function for saving an image
try:

self.image.save(self.filename)
Rnumber = From(1000,5000)
root.config(cursor="watch")
self.tool_option = 'toutch'
root.after(Rnumber,self.change)

except:
self.saveAs_file()

def openINTROimage(self): # // function for opening the into image
self.IMAGEopenINTRO=tk.PhotoImage(file='Base_images/intro.png')
self.MYimageINTRO = self.w.create_image(0, 0, anchor=tk.NW,

image=self.IMAGEopenINTRO)

def openButtonImages(self): # // function for opening images for each button

self.I=tk.PhotoImage(file='Base_images/draw.png')
self.M = self.w.create_image(0, 0, anchor=tk.NW, image=self.I)

self.W=tk.PhotoImage(file='Base_images/pixel.png')
self.K = self.w.create_image(0, 0, anchor=tk.NW, image=self.W)

self.T=tk.PhotoImage(file='Base_images/paint.png')
self.B = self.w.create_image(0, 0, anchor=tk.NW, image=self.T)

self.C=tk.PhotoImage(file='Base_images/color.png')
self.A = self.w.create_image(0, 0, anchor=tk.NW, image=self.C)

self.Y=tk.PhotoImage(file='Base_images/fill_all.png')
self.Z = self.w.create_image(0, 0, anchor=tk.NW, image=self.Y)

self.Mouse=tk.PhotoImage(file='Base_images/mouse.png')
self.esuoM = self.w.create_image(0, 0, anchor=tk.NW, image=self.Y)

root=Tk() # // creates the Tkinter window called root
root.wm_geometry("%dx%d+%d+%d" % (500, 550, 500, 100)) # // set's the windows size
root.config(bg='white') # // sets the window's background color to white
root.title("Handicraft") # // names the window's title screen to 'Handicraft'
GameClass(root,0,0) # // runs the game class named 'GameClass'
root.mainloop() # // The window is placed in a main loop, allowing for inputs to be
received at any time.

25

RESOURCES
W3schools.com – website

Github.com – website

GeeksForGeeks.com – website

StackOverflow.com – website

RealPython.com – website

learnPython.org – website

Python.org – website

Invent Your Own Computer Game With Python – Book

Think Python – Book

	Slide 1: Handicraft
	Slide 2: Table of contents
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

